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ABSTRACT 

In a *-linear Hestenes algebra, the elements with *-reciprocals are charac- 
terized by means of certain direct sum decompositions ofthe algebra. 

Introduetion. The generalizations of  the concepts of  Hermitian and normal 
matrices, and of  self-adjoint and normal closed dense operators on a Hilbert 
space [2, 3] and of  a spectral theory for such operators,(2) led Hestenes to 
introduce a ternary algebra with an involution [4], as the natural framework for 
these developments. In the detailed study of this algebra in [4],  the concept of  a 
*-reciprocal(3) plays a central rote; as in [5] it is shown to be closely related to a 
minimal polynomial in ternary powers. Thus the existence of  the latter is sufficient 
for that of  the former ( [4] theorem 11.2). 

In this note we invoke suitable regularity conditions, rather than minimum 
polynomials, to characterize the elements of  a *-linear Hestenes algebra a t  which 
have *-reciprocals (theorem 5(b) below). We relate the *-reciprocal to certain 
direct sum decompositions of  at ,  which are of  independent interest. Other 
decompositions of  a t  were given in [4, §7]. 
1. Let d be a *-linear ternary algebra in the sense of Hestenes [4], and let ~¢*, 
with A*BC*= (CB*A)* as a triple product, be the *-linear ternary algebra 
conjugate to at ,  e.g. [4, p. 141]. Following [4] we denote by a prime the *-reciprocal 
of  the element in question, whenever it exists, i.e. A' is the *-reciprocal 
of  A e a t  ( [4, p. 150]). By a t  = ~ ~ c~ we mean that a t  is the direct sum of the 
classes 8 ,  c~ ; i.e. that every A ~ a t  can be uniquely expressed as A = B + C with 
g e & ,  Ce~ ' .  For an ordered pair {A, B} of  element of  a t  we define the classes: 

R{A,B} = {Ce at: C = AU*B for some U ~ a t }  
N{A*, B*} = {C ~ a t :  A*CB* = 0}(4) 
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respectively called the range of {A, B}, the null space of {A*, B*}. An element 
A e ~¢ will be called regular if A = AP*A for some P ~ ~¢; and R-regular if it 
is regular and in addition ~¢ = R{A, A} ~9 N{A*, A*}. The analogous definitions 
for ~¢* are clear. All the results below have analogous counterparts for the 
conjugate algebra, which will be omitted. 

. Let A, B be any elements of ~¢. 
(a) R{A, B} is a ternary subalgebra of ~¢. 
(b) N{A*, B*} is a linear subspace of ~¢. 
(c) R{A*, = {R{B, A} }*, N{A, = {N{B*, a*} }* 
(d) R(A, A} C~ N{A*, A*} = {0}, the set consisting of the null element. 
(e) If  the *-reciprocals A', B' exist, then N{A, B} = N{A', B'}. 

Proof. Parts (a) (b) and (c) are obvious. 
(d) Let XeR{A ,A}  nN{A*,A*}, i.e., X = AU*A for some U ~ d ,  and 

A*AU*AA* = 0. By [4, Theorem 4.1], this is equivalent to A*UA* = 0, thus 
X = 0 .  

(e) Follows from: 

AX*B = AA*(A'X*B')B*B 

A'X*B' = A'A'*(AX*B)B'*B' for all X E ~¢ 

3. THEOREM. Let A, B be any elements of ~ ,  with *-reciprocals A', B'. 
(a) The equation 

(3.1) A*XB* = C*, 

C* given in ~¢*, is solvable (i.e., C*eR{A*, B*}) /f and only if: 

(3.2) A*A'C*B'B* = C*. 

(b) z¢* = R{A*, B*} ~ N{A, B}. 
(c) N{A*,B*} is the central orthogonal complement ([4, p. 146"]) of 
R{A, B}. 

Proof. 
(a) As in [5], theorem 2. 

(b) Write any element X*~z¢* as 

X* = Y* + Z* (3.3) 

where 

(3.4) Y* = A*A'X*B'B* 

is in R{A*, B*}. 
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That Z* ¢ N{A, B} follows from: 

AZ*B = A(X* - Y*)B -- AX*B - AA*A'X*B'B*B ffi O. 

It remains to show that R{A*, B*} n N{A, B} = {0}. 

Suppose X*eR{A* ,B*}  r~N{A,B}.  Then 

by (a) 

by 2(e), 

[March 

X* = A*A'X*B'B* 

and X* e N{A', B'} 

thus X* -- O. 

(c) If ZcN{A*,B*} then 

(3.5) AX*BZ*AX*B = 0, for all X ~ a t. 

Thus N{A*, B*} is contained in the central orthogonal complement of R{A, B}. 
Conversely, suppose (3.5) holds for all X e a t a n d  set X ffi BZ*A. Then X* and 
X*XX* are in R{A*, B*}. From (3.5), on the other hand, X*XX*¢  N{A, B}. 
Therefore X*XX*ff i  0 and X * =  0, i.e., ZcN{A*,B*}.  

REMARKS. 
(a) In the matrix case part (a) was given by Penrose ([5, Theorem 2]), and 

part (b) is due to Ben-lsrael-Chames ([I, Theorem 20]). 
(b) Part (b) is analogous to the Fredholm alternative theorem. 

4. THEOREM. Let A be any element of at. 
(a) The equation: 

(4.1) A = XA*A 

when solvable, has a unique solution in R{A, A}. 
(b) I f  A has a *-reciprocal A', then A' is the unique solution of (4.1) which 

lies in R{A, A}. 

Proof. 
(a) A solution X of (4.1) is in N{A*, A*} if and only if A ffi 0. This follows 

from the facts: 
(i) A ffi 0 if and only if AA*A = O, 
(ii) A*XA* = 0 if and only if AA*XA*A = O. 

Suppose now that (4.1) has two solution XI, X2 in R{A, A}. Then 

AA*(XI - X2)A*A = 0 

which is equivalent to ( X I -  X2)¢N{A*,A*}. Therefore XI = X2. 
(b) By [4], equation 6.1, A' satisfies (4.1) and is in R{A, A}. Uniqueness follows 

from (a). 
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REMARK. In the matrix case equation (4.1) is the normal equation and part (b) 
is the statement that A+b is the least squares solution of Ax = b, (see, e.g. [6]). 

5. TtmOREM. Let A be any element of d .  
(a) I f  A ,= AP*A for some P e d then X ~ R{A, A} if and only if 

(5.1) X = AP*XP*A. 

(b) The *-reciprocal A' exists if and only if A is R-regular. 
(c) A is R-regular if and only if A = AP*A and A permutes with P. 

Proof. 
(a) As in [5, Theorem 2], noting that only the regularity of A is used. 
(h) If A' exists then 

A = AA'*A and 

(5.2) a t = R{A, A} @ N{A*, A*}, by 3(b). 

Thus A is R-regular with P = A'. 
Conversely suppose that 

(5.3) A = AP*A for some P ~ at  and that (5.2) holds. By (5.2) there is a unique 
P in R{A, A} satisfying (5.3); we show now that this P is the *-reciprGcal of A. 
By [4, theorem 6.1] it suffices to show that: 

(5.4) A = PA*A and 

(5.5) P -- PP*A. 

To prove (5.4) consider D = A - PA*A, which is, by definition*, in R{A, A}. 
From (5.3) we conclude that D ¢ N{A*, A*} and thus that D = 0. 

To prove (5.5) we write 

PP*A = (AP*PP*A)P*A, by (a) 

= AP*PP*A, by (5.3) 

= P, by (a). 

(c) Let (5.3) hold for some P which permutes with A. For any X ~ at, the 
element AP*XP*A is in R{A, A} and the element X - AP*XP*A is in N{A*, A*}, 
since 

A*(X - AP*XP*A)A* = A*XA* - A*AP*XP*AA* 

and the conditions on P. The proof of(5.2) is now completed by using 2(d). Thus A 
is R-regular. Conversely, if A is R-regular then, by (b) and [4, theorem 6.1], there 
is a P ¢ d ,  namely P = A', which permutes with A and satisfies (5.3). 

* Since A is R-regular, and A = 0 ~ A*AA* .~ O, it follows that A E R[A,A]. 
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