ON DIRECT SUM DECOMPOSITIONS OF HESTENES ALGEBRAS

RV

ADI BEN-ISRAEL(1)

ABSTRACT

In a *-linear Hestenes algebra, the elements with *-reciprocals are characterized by means of certain direct sum decompositions ofthe algebra.

Introduction. The generalizations of the concepts of Hermitian and normal matrices, and of self-adjoint and normal closed dense operators on a Hilbert space $\lceil 2, 3 \rceil$ and of a spectral theory for such operators, (2) led Hestenes to introduce a ternary algebra with an involution [4], as the natural framework for these developments. In the detailed study of this algebra in [4], the concept of a *-reciprocal(3) plays a central role; as in [5] it is shown to be closely related to a minimal polynomial in ternary powers. Thus the existence of the latter is sufficient for that of the former $(4]$ theorem 11.2).

In this note we invoke suitable regularity conditions, rather than minimum polynomials, to characterize the elements of a *-linear Hestenes algebra $\mathcal A$ which have *-reciprocals (theorem $5(b)$ below). We relate the *-reciprocal to certain direct sum decompositions of \mathcal{A} , which are of independent interest. Other decompositions of $\mathscr A$ were given in [4, §7].

1. Let $\mathscr A$ be a *-linear ternary algebra in the sense of Hestenes [4], and let $\mathscr A^*$, with $A^*BC^* = (CB^*A)^*$ as a triple product, be the *-linear ternary algebra conjugate to \mathcal{A} , e.g. [4, p. 141]. Following [4] we denote by a prime the *-reciprocal of the element in question, whenever it exists, i.e. A' is the *-reciprocal of $A \in \mathcal{A}$ ([4, p. 150]). By $\mathcal{A} = \mathcal{B} \oplus \mathcal{C}$ we mean that \mathcal{A} is the *direct sum* of the classes \mathscr{B}, \mathscr{C} ; i.e. that every $A \in \mathscr{A}$ can be uniquely expressed as $A = B + C$ with $\mathscr{B} \in \mathscr{B}$, $C \in \mathscr{C}$. For an ordered pair $\{A, B\}$ of element of \mathscr{A} we define the classes:

$$
R\{A, B\} = \{C \in \mathcal{A} : C = AU^*B \text{ for some } U \in \mathcal{A}\}
$$

$$
N\{A^*, B^*\} = \{C \in \mathcal{A} : A^*CB^* = 0\}(4)
$$

Received September 9, 1963.

 (1) Research partly supported by the Office of Naval Research, contract Nonr-1228(10) project NR 047-021, and by the National Science Foundation, project B-14102.

⁽²⁾ See the references in [4], pp. 139 and 140.

⁽³⁾ For closed dense linear operators on a Hilbert space the *-reciprocal coincides with the adjoint of the generalized inverse, e.g. [5], [ll.

^{(4) 0} denotes the null element in both $\mathcal{A}, \mathcal{A}^*$

respectively called the *range of* $\{A, B\}$, the *null space of* $\{A^*, B^*\}$. An element $A \in \mathscr{A}$ will be called *regular* if $A = AP^*A$ for some $P \in \mathscr{A}$; and *R-regular* if it is regular and in addition $\mathcal{A} = R\{A, A\} \oplus N\{A^*, A^*\}$. The analogous definitions for \mathscr{A}^* are clear. All the results below have analogous counterparts for the conjugate algebra, which will be omitted.

- 2. Let A, B be any elements of $\mathcal A$.
	- (a) $R\{A, B\}$ is a ternary subalgebra of \mathcal{A} .
	- (b) $N\{A^*, B^*\}$ is a linear subspace of $\mathscr A$.
	- (c) $R\{A^*, B^*\} = \{R\{B, A\}\}^*, N\{A, B\} = \{N\{B^*, A^*\}\}^*$
	- (d) $R(A, A) \cap N\{A^*, A^*\} = \{0\}$, the set consisting of the null element.
	- (e) If the *-reciprocals A' , B' exist, then $N\{A, B\} = N\{A', B'\}.$

Proof. Parts (a) (b) and (c) are obvious.

(d) Let $X \in R\{A, A\} \cap N\{A^*, A^*\}$, i.e., $X = AU^*A$ for some $U \in \mathcal{A}$, and $A^*AU^*AA^* = 0$. By [4, Theorem 4.1], this is equivalent to $A^*UA^* = 0$, thus $X=0$.

(e) Follows from:

$$
AX^*B = AA^*(A'X^*B')B^*B
$$

$$
A'X^*B' = A'A'^*(AX^*B)B'^*B'
$$
 for all $X \in \mathcal{A}$

3. THEOREM. Let A , B be any elements of A , with *-reciprocals A' , B' . *(a) The equation*

$$
(3.1) \t\t A^*XB^* = C^*,
$$

 C^* given in \mathscr{A}^* , is solvable (i.e., $C^* \in R\{A^*, B^*\}$) if and only if:

$$
(3.2) \tA^*A'C^*B'B^* = C^*.
$$

(b) $\mathscr{A}^* = R\{A^*, B^*\} \oplus N\{A, B\}.$ (c) $N\{A^*, B^*\}$ *is the central orthogonal complement* ($[4, p. 146]$) *of R{A, B}.*

Proof.

(a) As in $\lceil 5 \rceil$, theorem 2.

(b) Write any element $X^* \in \mathcal{A}^*$ as

$$
(3.3) \t\t\t X^* = Y^* + Z^*
$$

where

(3.4) $Y^* = A^*A'X^*B'B^*$

is in $R\{A^*, B^*\}.$

That $Z^* \in N\{A, B\}$ follows from:

$$
AZ^*B = A(X^* - Y^*)B = AX^*B - AA^*A'X^*B'B^*B = 0.
$$

It remains to show that $R\{A^*, B^*\} \cap N\{A, B\} = \{0\}.$

Suppose $X^* \in R\{A^*, B^*\} \cap N\{A, B\}$. Then $X^* = A^*A'X^*B'B^*$ by (a) and $X^* \in N\{A', B'\}$ by 2(e), thus $X^* = 0$.

(c) If $Z \in N\{A^*, B^*\}$ then

(3.5) $AX^*BZ^*AX^*B = 0$, for all $X \in \mathcal{A}$.

Thus $N\{A^*, B^*\}$ is contained in the central orthogonal complement of $R\{A, B\}$. Conversely, suppose (3.5) holds for all $X \in \mathcal{A}$ and set $X = BZ^*A$. Then X^* and X^*XX^* are in $R\{A^*, B^*\}$. From (3.5), on the other hand, $X^*XX^* \in N\{A, B\}$. Therefore $X^*XX^* = 0$ and $X^* = 0$, i.e., $Z \in N\{A^*, B^*\}.$

REMARKS.

(a) In the matrix case part (a) was given by Penrose ($[5,$ Theorem 2]), and part (b) is due to Ben-lsrael-Chames ([I, Theorem 20]).

(b) Part (b) is analogous to the Fredholm alternative theorem.

4. THEOREM. *Let A be any element of at. (a) The equation:*

$$
(4.1) \t\t A = XA^*A
$$

when solvable, has a unique solution in $R\{A, A\}$.

(b) If A has a^* -reciprocal A' , then A' is the unique solution of (4.1) which *lies in R{A, A}.*

Proof.

(a) A solution X of (4.1) is in $N\{A^*, A^*\}$ if and only if $A = 0$. This follows from the facts:

(i) $A = 0$ if and only if $AA^*A = 0$,

(ii) $A^*XA^* = 0$ if and only if $AA^*XA^*A = 0$.

Suppose now that (4.1) has two solution X_1, X_2 in $R\{A, A\}$. Then

$$
AA^*(X_1 - X_2)A^*A = 0
$$

which is equivalent to $(X_1 - X_2) \in N\{A^*, A^*\}$. Therefore $X_1 = X_2$.

(b) By [4], equation 6.1, A' satisfies (4.1) and is in $R\{A, A\}$. Uniqueness follows from (a).

REMARK. In the matrix case equation (4.1) is the normal equation and part (b) is the statement that A^+b is the least squares solution of $Ax = b$, (see, e.g. [6]).

5. THEOREM. Let A be any element of $\mathcal A$. (a) If $A = AP^*A$ for some $P \in \mathcal{A}$ then $X \in R\{A, A\}$ if and only if

$$
(5.1) \t\t X = AP^*XP^*A.
$$

*(b) The *-reciprocal A' exists if and only if A is R-regular.*

(c) *A* is R-regular if and only if $A = AP^*A$ and *A* permutes with P.

Proof.

(a) As in [5, Theorem 2], noting that only the regularity of \vec{A} is used.

(h) If *A'* exists then

$$
A = AA'^*A \text{ and }
$$

(5.2)
$$
\mathscr{A} = R\{A, A\} \oplus N\{A^*, A^*\}, \text{ by } 3(b).
$$

Thus A is R-regular with $P = A'$.

Conversely suppose that

(5.3) $A = AP^*A$ for some $P \in \mathcal{A}$ and that (5.2) holds. By (5.2) there is a unique P in $R\{A, A\}$ satisfying (5.3); we show now that this P is the *-reciprocal of A. By [4, theorem 6.1] it suffices to show that:

$$
(5.4) \t\t A = PA^*A \t and
$$

$$
(5.5) \t\t P = PP^*A.
$$

To prove (5.4) consider $D = A - PA^*A$, which is, by definition^{*}, in $R\{A, A\}$. From (5.3) we conclude that $D \in N\{A^*, A^*\}$ and thus that $D = 0$.

To prove (5.5) we write

$$
PP^*A = (AP^*PP^*A)P^*A, \text{ by (a)}
$$

= AP^*PP^*A, \text{ by (5.3)}
= P, \text{ by (a).

(c) Let (5.3) hold for some P which permutes with A. For any $X \in \mathcal{A}$, the element AP^*XP^*A is in $R\{A, A\}$ and the element $X - AP^*XP^*A$ is in $N\{A^*, A^*\},$ since

$$
A^*(X - AP^*XP^*A)A^* = A^*XA^* - A^*AP^*XP^*AA^*
$$

and the conditions on P. The proof of (5.2) is now completed by using 2(d). Thus A is R-regular. Conversely, if A is R-regular then, by (b) and $[4,$ theorem 6.1], there is a $P \in \mathcal{A}$, namely $P = A'$, which permutes with A and satisfies (5.3).

^{*} Since A is R-regular, and $A = 0 \Leftrightarrow A^*AA^* = 0$, it follows that $A \in R[A,A]$.

54 ADI BEN-ISRAEL

REFERENCES

1. Ben-Israel A., and Charnes A., 1963, Contributions to the theory of generalized inverses, forthcoming in *J. SLAM,* 11, 667-699.

2. Hestenes, M.R., 1961, Relative Hermitian matrices, *Pae. J. Math.,* II, 225-345.

3. Hestenes, M.R., 1961, Relative self-adjoint operators in Hilbert space. *Pac. J. Math.,* 11, 1315-1357.

4. Hestenes, M.R., 1962, A ternary algebra with applications to matrices and linear transformations, *Arch. Rat. Mech. Anal.,* 11, 138-194.

5. Penrose, R., 1955, A generalized inverse for matrices, *Proc. Camb. Philos. Soc.*, 51, 406-413.

6. Penrose, R., 1956, On best approximate solutions of linear matrix *equations,Proc. Carab. Philos. Soc.,* 52, 17-19.

TECHNION-ISRAEL INSTITUTE OF TECHNOLOGY, HAIFA AND

NORTHWESTERN UNIVERSITY, EVANSTON, ILLINOIS