ON DIRECT SUM DECOMPOSITIONS OF HESTENES ALGEBRAS

BY

ADI BEN-ISRAEL(1)

ABSTRACT

In a *-linear Hestenes algebra, the elements with *-reciprocals are characterized by means of certain direct sum decompositions of the algebra.

Introduction. The generalizations of the concepts of Hermitian and normal matrices, and of self-adjoint and normal closed dense operators on a Hilbert space [2, 3] and of a spectral theory for such operators,⁽²⁾ led Hestenes to introduce a ternary algebra with an involution [4], as the natural framework for these developments. In the detailed study of this algebra in [4], the concept of a *-reciprocal⁽³⁾ plays a central role; as in [5] it is shown to be closely related to a minimal polynomial in ternary powers. Thus the existence of the latter is sufficient for that of the former ([4] theorem 11.2).

In this note we invoke suitable regularity conditions, rather than minimum polynomials, to characterize the elements of a *-linear Hestenes algebra \mathcal{A} which have *-reciprocals (theorem 5(b) below). We relate the *-reciprocal to certain direct sum decompositions of \mathcal{A} , which are of independent interest. Other decompositions of \mathcal{A} were given in [4, §7].

1. Let \mathscr{A} be a *-linear ternary algebra in the sense of Hestenes [4], and let \mathscr{A}^* , with $A^*BC^* = (CB^*A)^*$ as a triple product, be the *-linear ternary algebra conjugate to \mathscr{A} , e.g. [4, p. 141]. Following [4] we denote by a prime the *-reciprocal of the element in question, whenever it exists, i.e. A' is the *-reciprocal of $A \in \mathscr{A}$ ([4, p. 150]). By $\mathscr{A} = \mathscr{B} \oplus \mathscr{C}$ we mean that \mathscr{A} is the *direct sum* of the classes \mathscr{B}, \mathscr{C} ; i.e. that every $A \in \mathscr{A}$ can be uniquely expressed as A = B + C with $\mathscr{B} \in \mathscr{B}, C \in \mathscr{C}$. For an ordered pair $\{A, B\}$ of element of \mathscr{A} we define the classes:

$$R\{A, B\} = \{C \in \mathscr{A} : C = AU^*B \text{ for some } U \in \mathscr{A}\}$$
$$N\{A^*, B^*\} = \{C \in \mathscr{A} : A^*CB^* = 0\}(^4)$$

Received September 9, 1963.

⁽¹⁾ Research partly supported by the Office of Naval Research, contract Nonr-1228(10) project NR 047-021, and by the National Science Foundation, project B-14102.

⁽²⁾ See the references in [4], pp. 139 and 140.

⁽³⁾ For closed dense linear operators on a Hilbert space the *-reciprocal coincides with the adjoint of the generalized inverse, e.g. [5], [1].

^{(4) 0} denotes the null element in both \mathcal{A} , \mathcal{A}^*

respectively called the range of $\{A, B\}$, the null space of $\{A^*, B^*\}$. An element $A \in \mathcal{A}$ will be called regular if $A = AP^*A$ for some $P \in \mathcal{A}$; and *R*-regular if it is regular and in addition $\mathcal{A} = R\{A, A\} \oplus N\{A^*, A^*\}$. The analogous definitions for \mathcal{A}^* are clear. All the results below have analogous counterparts for the conjugate algebra, which will be omitted.

- 2. Let A, B be any elements of \mathcal{A} .
 - (a) $R\{A, B\}$ is a ternary subalgebra of \mathcal{A} .
 - (b) $N{A^*, B^*}$ is a linear subspace of \mathscr{A} .
 - (c) $R{A^*, B^*} = {R{B, A}}^*, N{A, B} = {N{B^*, A^*}}^*$
 - (d) $R(A, A) \cap N\{A^*, A^*\} = \{0\}$, the set consisting of the null element.
 - (e) If the *-reciprocals A', B' exist, then $N\{A, B\} = N\{A', B'\}$.

Proof. Parts (a) (b) and (c) are obvious.

(d) Let $X \in R\{A, A\} \cap N\{A^*, A^*\}$, i.e., $X = AU^*A$ for some $U \in \mathcal{A}$, and $A^*AU^*AA^* = 0$. By [4, Theorem 4.1], this is equivalent to $A^*UA^* = 0$, thus X = 0.

(e) Follows from:

$$AX^*B = AA^*(A'X^*B')B^*B$$
$$A'X^*B' = A'A'^*(AX^*B)B'^*B' \text{ for all } X \in \mathscr{A}$$

3. THEOREM. Let A, B be any elements of A, with *-reciprocals A', B'.
(a) The equation

C^{*} given in \mathcal{A}^* , is solvable (i.e., C^{*} $\in R\{A^*, B^*\}$) if and only if:

(3.2)
$$A^*A'C^*B'B^* = C^*.$$

(b) $\mathscr{A}^* = R\{A^*, B^*\} \oplus N\{A, B\}.$ (c) $N\{A^*, B^*\}$ is the central orthogonal complement ([4, p. 146]) of $R\{A, B\}.$

Proof.

(a) As in [5], theorem 2.

(b) Write any element $X^* \in \mathscr{A}^*$ as

$$(3.3) X^* = Y^* + Z^*$$

where

(3.4) $Y^* = A^*A'X^*B'B^*$

is in $R\{A^*, B^*\}$.

That $Z^* \in N\{A, B\}$ follows from:

$$AZ^*B = A(X^* - Y^*)B = AX^*B - AA^*A'X^*B'B^*B = 0.$$

It remains to show that $R{A^*, B^*} \cap N{A, B} = \{0\}$.

Suppose

 $X^* \in R\{A^*, B^*\} \cap N\{A, B\}$. Then $X^* = A^*A'X^*B'B^*$ by (a) $X^* \in N\{A', B'\}$ by 2(e),

thus

and

 $X^* = 0$

(c) If $Z \in N\{A^*, B^*\}$ then

 $AX^*BZ^*AX^*B = 0$, for all $X \in \mathcal{A}$. (3.5)

Thus $N\{A^*, B^*\}$ is contained in the central orthogonal complement of $R\{A, B\}$. Conversely, suppose (3.5) holds for all $X \in \mathcal{A}$ and set $X = BZ^*A$. Then X^* and X^*XX^* are in $R\{A^*, B^*\}$. From (3.5), on the other hand, $X^*XX^* \in N\{A, B\}$. Therefore $X^*XX^* = 0$ and $X^* = 0$, i.e., $Z \in N\{A^*, B^*\}$.

REMARKS.

(a) In the matrix case part (a) was given by Penrose ([5, Theorem 2]), and part (b) is due to Ben-Israel-Charnes ([1, Theorem 20]).

(b) Part (b) is analogous to the Fredholm alternative theorem.

4. THEOREM. Let A be any element of A. (a) The equation:

when solvable, has a unique solution in $R\{A, A\}$.

(b) If A has a *-reciprocal A', then A' is the unique solution of (4.1) which lies in $R\{A, A\}$.

Proof.

(a) A solution X of (4.1) is in $N\{A^*, A^*\}$ if and only if A = 0. This follows from the facts:

(i) A = 0 if and only if $AA^*A = 0$,

(ii) $A^*XA^* = 0$ if and only if $AA^*XA^*A = 0$.

Suppose now that (4.1) has two solution X_1, X_2 in $R\{A, A\}$. Then

$$AA^*(X_1 - X_2)A^*A = 0$$

which is equivalent to $(X_1 - X_2) \in N\{A^*, A^*\}$. Therefore $X_1 = X_2$.

(b) By [4], equation 6.1, A' satisfies (4.1) and is in $R\{A, A\}$. Uniqueness follows from (a).

52

REMARK. In the matrix case equation (4.1) is the normal equation and part (b) is the statement that A^+b is the least squares solution of Ax = b, (see, e.g. [6]).

5. THEOREM. Let A be any element of \mathcal{A} . (a) If $A = AP^*A$ for some $P \in \mathcal{A}$ then $X \in R\{A, A\}$ if and only if

$$(5.1) X = AP^*XP^*A.$$

(b) The *-reciprocal A' exists if and only if A is R-regular.

(c) A is R-regular if and only if $A = AP^*A$ and A permutes with P.

Proof.

(a) As in [5, Theorem 2], noting that only the regularity of A is used.

(b) If A' exists then

$$A = AA'^*A$$
 and

(5.2)
$$\mathscr{A} = R\{A, A\} \oplus N\{A^*, A^*\}, \text{ by } 3(b).$$

Thus A is R-regular with P = A'.

Conversely suppose that

(5.3) $A = AP^*A$ for some $P \in \mathcal{A}$ and that (5.2) holds. By (5.2) there is a unique P in $R\{A, A\}$ satisfying (5.3); we show now that this P is the *-reciprocal of A. By [4, theorem 6.1] it suffices to show that:

$$(5.4) A = PA^*A ext{ and }$$

$$(5.5) P = PP^*A.$$

To prove (5.4) consider $D = A - PA^*A$, which is, by definition^{*}, in $R\{A, A\}$. From (5.3) we conclude that $D \in N\{A^*, A^*\}$ and thus that D = 0.

To prove (5.5) we write

$$PP^*A = (AP^*PP^*A)P^*A, \text{ by (a)}$$
$$= AP^*PP^*A, \text{ by (5.3)}$$
$$= P, \text{ by (a)}.$$

(c) Let (5.3) hold for some P which permutes with A. For any $X \in \mathcal{A}$, the element AP^*XP^*A is in $R\{A, A\}$ and the element $X - AP^*XP^*A$ is in $N\{A^*, A^*\}$, since

$$A^*(X - AP^*XP^*A)A^* = A^*XA^* - A^*AP^*XP^*AA^*$$

and the conditions on P. The proof of (5.2) is now completed by using 2(d). Thus A is R-regular. Conversely, if A is R-regular then, by (b) and [4, theorem 6.1], there is a $P \in \mathcal{A}$, namely P = A', which permutes with A and satisfies (5.3).

^{*} Since A is R-regular, and $A = 0 \Leftrightarrow A^*AA^* = 0$, it follows that $A \in R[A,A]$.

ADI BEN-ISRAEL

References

1. Ben-Israel A., and Charnes A., 1963, Contributions to the theory of generalized inverses, forthcoming in J. SIAM, 11, 667-699.

2. Hestenes, M.R., 1961, Relative Hermitian matrices, Pac. J. Math., 11, 225-345.

3. Hestenes, M.R., 1961, Relative self-adjoint operators in Hilbert space. Pac. J. Math., 11, 1315-1357.

4. Hestenes, M.R., 1962, A ternary algebra with applications to matrices and linear transformations, Arch. Rat. Mech. Anal., 11, 138-194.

5. Penrose, R., 1955, A generalized inverse for matrices, Proc. Camb. Philos. Soc., 51, 406-413.

6. Penrose, R., 1956, On best approximate solutions of linear matrix equations, *Proc. Camb. Philos. Soc.*, **52**, 17–19.

TECHNION-ISRAEL INSTITUTE OF TECHNOLOGY, HAIFA

NORTHWESTERN UNIVERSITY, EVANSTON, ILLINOIS